SMART SERVO GUIDES: RE-CODING

This guide will show you how to alter the code on your Smart Servo.

1: Choosing a Text Editor

The code that comes pre-installed on the Smart Servo is written in Circuit Python. This
Python coding can be read and edited by nearly anything that con open a text file. We
recommend using a text editing program that will recognize the Python code and
colorize it for readability. Here are three text editors we recommend:

CODE PAD
CODE e Best option for Chromebooks

PA > e Free Chrome Extension

e Install guide at tinyurl.com/CodePadInstall

SUBLIME TEXT

* Works on Mac & PC (Used in guides below)
* Free install

* Download at https://www.sublimetext.com/

CIRCUIT PYTHON CODE
* Web-based
* Includes Serial Monitor
* Access at https://code.circuitpython.org/

CIIeL

L

2: Accessing the Programming that Came with Your Smart Servo
Step 1: Connect one end of the Micro-USB
cable to the Smart Servo and the other
end to the USB port of the computer you

want to use to program.

Step 2: Like an external drive, the Smart Servo
will appear with the name CIRCUITPY. Open
this drive and find the file code.py. Open this
file with your text editor.

o |

CIRCUITPY code.py

<

pen with Text Editor

WagnerLabs.NET/SmartServo/ e

SMART SERVO GUIDES: RE-CODING

3: Starting with ‘snips’ of code
The base code that is used in the Getting Started Guide was developed and tested in Adapted
Physical Education equipment created for students with physical disabilities. This default
code can be found in the first lines of the code.py file. This code can be edited, saved, and
tested.
To start working with “snips” of code, we’re going to use three single apostrophes written as
" before and after the base code. This will gray-out the code and cause the Smart Servo to
ignore this code when it runs. To start working with a snip, simple remove one of the
apostrophes before and after the snip (“'=>"’)

time.sleep(0.0)

(O I 6, [N N

A WNEES WO

time
board
digitalio DigitalInOut, Direction, Pull
led = DigitalInOut(board.LED)

w

led.direction - Direction.OUTPUT
True:
led.value - 1
time.sleep(1)
led.value = 0
time.sleep(.5)

(O, 00, BT, N, I, N,
o

~

Smart Servo ignores all code after line 49. Smart Servo ignores all code except lines 50 to 62.

4: Parts of the Smart Servo
As some of the code refers to specific components of the Smart Servo, the diagram below
gives us a chance to review some of the main features.
Mounﬁna

Holes N\ Servo
2‘ , =) e Full Metal
25 mm ST -

Gear Box
Assistive e ©

Button
AUX Jack

° |5 K@/cm

Stall Torque

Micro UsBk N | Microcontroller
5V Power WV e Circuit Py‘rhon 8.0
or * Preprogrammed
Programming _ / : with 10 Snippets

2 WagnerLabs.NET/SmartServo/ M S

SMART SERVO GUIDES: RE-CODING

5: Feedback Loop
Because the Smart Servo’s micro controller does all of the code compiling right in real time,
it’s easy to establish a rapid feedback loop. This graphics below summarizes this starting with
@ where we connected the Smart Servo to a computer.
Open Open
==p CIRCUITPY ==p code.py
folder file

Connect

o to USB

Doesn’t

Work :
TEST in Eject
Apparatus

TEST
Apparatus
in the Wild

6: Work through each Snippet.
It is recommended that beginners start by working through each snippet on the Smart Servo.
Each snippet introduces a new input or output or shows how different strategies can be used
to make the Smart Servo more sophisticated in what it can do. With each snippet, try to mess
with some of the code to see what it does. If something stops working, undo the step that
made it stop working. If things get really out of whack, replace the files on the Smart Servo
with the ones found here:

tinyurl.com/SmartServoSnips

Below, you'll find the snips with some reminders and references. Also included is a flow chart
to illustrate the logic behind each snippet.

3 WagnerLabs.NET/SmartServo/ M S

2 B SMART SERVO GUIDES: RE-CODING

@SIMPLE I/0 BLINKING RED LED

- At baHerY cohhection

- Time -> Control Delays time

LIBRARIES | - Board -> Built in Electronics ‘board

v - Digital 1/0 -> LED Control digitalio DigitalInOut, Direction, Pull

- Name ‘led" led - DigitalInOut(board.LED)

- Output on Board led.direction - Direction.OUTPUT

@ While Loop

'l' led.value 1

- | second time.sleep(1)

+ led.value 4]
time.sleep(.5)

L
—/ WAIT_/- V2 a second SNIPPET #1

BLINKING RED LED

\ Light Emitting Diode

board

digitalio DigitalInOut, Direction, Pull
led = DigitalInOut(board.LED)
led.direction Direction.OUTPUT

True:

led.value il

time.sleep(1)

led.value 0

time.sleep(.5)

o wWwWoLo~NOULIESE WNE

=

Snippe+9 are avaiable to copy,

Pae‘+e, — modi?y Eromlere tinyurl.com/SmartServoSnips SNTRDET i3

WagnerLabs.NET/SmartServo/

SWITCH DETECTOR

- Board
(Eoaiiy | UBR:R'ESI- Digjtal 1/0

- Name ‘led" - input
- Name ‘switch' - Output
 Z
e Loy
—> ¥

= ‘I
<Swnc> > /TEon/
J ELSE ‘

SNIPPET #2

SWITCH DETECTOR

@SIMPLE I/0

board
digitalio DigitalInOut, Direction, Pull
led = DigitalInOut(board.LED)
led.direction Direction.OUTPUT
switch = DigitalInOut(board.D1)
switch.direction Direction. INPUT

switch.pull = Pull.DOWN When the switch is “on’
True: the signal at DI is

oONOULTE WN =

switch.value . connected to high (5Vv)
led.value 1

led.value (]

SNIPPET #2

WagnerLabs.NET/SmartServo/

BUTTON DETECTOR

- Board
(_ BoOT) = | LIBR:RIES | Digital 1/0

el
- Name "button" - Output
 Z
LOOP - While Loop . -
kS or IF 'Down

* k\/
IF ‘0" or IF 'Pushed"
<GroR> > /TEon/
V ELSE ‘

SNIPPET #3

BUTTON DETECTOR

@SIMPLE I/0

board
digitalio DigitalInOut, Direction, Pull
led = DigitalInOut(board.LED)
led.direction Direction.OUTPUT
button = DigitalInOut(board.D2)
button.direction Direction.INPUT
button.pull Pull.UP When the button is ‘on' the
True: signal at D2 is connected
button.value . to low (Ground)
led.value 1

OCOoONOULTE WN =

led.value)

SNIPPET #3

WagnerLabs.NET/SmartServo/

PICKER

- Board
(BoOT) = | LIBR:RIES |- Sstei ot

- Name 'pixel' - Output
2
- While Loop
\ 4

/ RED, GREEN, BLUE / - 0-255 (2° or 8-bits)
levels in each color

channel.

SNIPPET #4

COLOR PICKER

adafruit_dotstar
pixel - adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)
True:
pixell[o] = (145,5,255)

[\/ Some commohn colors

T T

255,255, 0 O, 255, 255

255, 57 0

SNIPPET #4

WagnerLabs.NET/SmartServo/

}. SMART SERVO GUIDES: RE-CODING

- Dotstar

SETUP |- Name "pixel’

 Z
- While Loop

Y, - For Locp
¥ <
/ INCREASE GREEN / - By | | Repeat 255 Times
|

\
- For Loop
\ 2
//DECREASE GREEN/ - By | | Repeat 25 Times
i

#

> [uBRARiEs | - Boord
¥

SNIPPET #5

COLOR FADE

@SIMPLE I/0

time
board
adafruit_dotstar
pixel - adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)
True:
i range (0,255,1):

p@xel[@] (0,1,0) i ranae(O,?JS':T,l)'-
time.sleep(.01)

i range (255,0,-1): r’f T k*-\
pixel[@] (0,i,0) S+or+mg Er’:du‘.@ Chamgma
time.sleep(.01)

O~NOUT S WN =

Value Value Value

SNIPPET #5

WagnerLabs.NET/SmartServo/

@SIMPLE I/0

o~NOUTESE WN =

SMART SERVO GUIDES: RE-CODING

SERVO RANGE

d

- Boar
=>» | LIBRARIES | - pulse Wave Modulation (PWM)

* - Servo

setup |- Set PWM Input/Output Duty Cycle and Frequency

- Name ‘servo"

\4
- Whie Loop
- rotate to position at O degrees

A4

WAIT - | second
\4

SERVO / - rotate to position at 90 degr‘ee«;
\4

WAIT - | second

A4

- rotate to position at 180 dearees

A4

WAIT - | second
—

SNIPPET #6

SERVO RANGE

time
board
pwmio
servo
pwm = pwmio.PWMOut(board.A2, duty_cycle=2 15, frequency=50)
servo - servo.Servo(pwm)
True:
servo.angle - 0
time.sleep(1)
servo.angle = 90
time.sleep(1)
servo.angle - 180
time.sleep(1)

SNIPPET #6

WagnerLabs.NET/SmartServo/

@SIMPLE I/0

O~NOUT S WN =

SERVO SWEEP

(BOOT) -> I LIBRARIES I - Pulse Wave Modulation (PWM)
¥ - Servo

- Set PWM Input/Output Duty Cycle and Frequency

- Name ‘servo"
\4
- Whte Locp

== - For Loop
V€
- increase rotation by | KePem\ 180 Times

L
¥

L A
- decrease rotation by I Repeat 180 Times
|
SE———

SNIPPET #7

SERVO SWEEP

time
board
pwmio
servo
pwm = pwmio.PWMOut(board.A2, duty_cycle=2 15, frequency=50)
servo - servo.Servo(pwm)
True:
i range (0,180,1):
servo.angle - i
time.sleep(.01)
i range (180,0,-1):
servo.angle - i
time.sleep(.01)
SNIPPET #7

WagnerLabs.NET/SmartServo/

SMART SERVO GUIDES: RE-CODING

time
board
digitalio DigitalInOut, Direction, Pull
switch - DigitalInOut(board.D1)
switch.direction - Direction.INPUT
switch.pull Pull.DOWN
pwmio
Servo
pwm pwmio.PWMOut(board.A2, duty_cycle=2 15, frequency=50)
servo - servo.Servo(pwm)
def servosweep(): . L
i range (0,180,1):
servo.angle - i
time.sleep(.01)
i range (180,0,-1):
servo.angle - i
time.sleep(.01)
adafruit_dotstar
pixel - adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)
def pixelfade():
i range (0,255,1):
pixel[@] (0,0,1)
time.sleep(.01)
) | range (255,0,-1):
pixel[0] (0,0,1i)
time.sleep(.01)

switch.value
servosweep()

pixelfade()

WagnerLabs.NET/SmartServo/

SMART SERVO GUIDES: RE-CODING

time
board
digitalio DigitalInOut, Direction, Pull
button = DigitalInOut(board.D2)
button.direction = Direction.INPUT
button.pull = Pull.UP
pwmio
Servo
pwm = pwmio.PWMOut(board.A2, duty_cycle=2 15, frequency=50)
servo - servo.Servo(pwm)
toggle - 0
True:
button.value 0 toggle
servo.angle = 0
time.sleep(1)
toggle - 1
button.value 0 toggle
servo.angle - 180
time.sleep(1)
toggle = 0

WagnerLabs.NET/SmartServo/

SMART SERVO GUIDES: RE-CODING

board
pwmio
servo
pwm - pwmio.PWMOut(board.A2, duty cycle-2 15, frequency=50)
servo - servo.Servo(pwm)
digitalio DigitalInOut, Direction, Pull
button = DigitalInOut(board.D2)
button.direction - Direction.INPUT - True:
button.pull Pull.UP 17 button.value -0 t1
time 1 servo.angle-90
t1-0) t1-time.monotonic()
12-0 20 button.value -1 t1
t3-0 21 t2-time.monotonic()
gate-0 2 t3=t2-t1
button.value--0 t2
gate-1
servo.angle-10
time.sleep(1)
servo.angle-180
gate--1 £3>.3:
t1-0
t2-0
t3-0
gate-0

WagnerLabs.NET/SmartServo/

